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satisfactory image (Fig. 8). An example of a disloca- 
tion in silicon is shown in Fig. 9. 

This automatic switching cannot be used for exten- 
ded defects, since it is not possible to establish a 
refined network as shown in Fig. 6: the defect inter- 
sects the transmitted beam in all planes of incidence 
and one must rebuild a different refined network for 
each incidence plane. The best method is to use the 

method for the nodes between the direct image 
and Sh and the ~ method near So. The only difficulty 
is that one must switch between the integration for- 
mulae (13) and (14). This means, as indicated in (3), 
that one must change the phase of the wave in the 
middle of the integration process. This may be rather 
delicate since the phase between two adjacent nodes 
in the integration network may vary more rapidly 
than the modulus of the amplitudes. This means that 
one must be very careful about the length of the steps 
of integration. No general values can be given since 
it depends on the kind of material and deformation 
and only a trial-and-error method maybe used. We 
have used this method to simulate the images of 
quartz piezoelectric resonators and we found after 
many tests that the step sizes could be used for all 
the simulations independently from the diffraction 
parameters (Carvalho, 1990). 

Concluding remarks 

In the present paper, we describe a new numerical 
algorithm to integrate Takagi-Taupin equations when 
the incident wave is not a plane wave. We have been 
able to estimate the error term and minimize it by 
using two different forms of the equations in the 
numerical computation. This new method presents 
two advantages. 

(i) It is more accurate than the usual Tournarie 
method. As we will show in our next paper (Carvalho 

& Epelboin, 1993), it allows use of the theorem of 
reciprocity to simulate traverse and synchrotron topo- 
graphs, which has not been possible before. There 
are many advantages to this, which will be explained 
in this paper. 

(ii) It is faster since it needs less operations. The 
computing time is halved. It is now possible to com- 
pute section topographs on a good modern microcom- 
puter. An image may be calculated in a few minutes 
and requires only a modest-size memory. 

This method enables the simulation of section and 
traverse topographs to cover extended defects since 
now the simulation of the direct image is much more 
satisfactory. 

CAMC acknowledges a doctorate scholarship from 
CNPq, Brazil. 
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Abstract 

A new demonstration of the reciprocity theorem of 
optics in the case of the X-ray dynamical theory is 
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given. It is applied to the simulation of traverse and 
white-beam synchrotron topographs. It is shown that 
the accuracy of a new numerical algorithm [Carvalho 
& Epelboin (1993). Acta Cryst. A49, 460-467] allows 
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the use of the reciprocity theorem. Its main advantage 
is to decrease the time of computation by at least an 
order of magnitude and to permit a strategy to be 
built for the quantitative study of defects, starting 
with simulations of poor resolution and increasing 
resolution only in worthwhile areas. This was not 
possible with the previous method. 

I. Introduction 

In our preceding paper (Carvalho & Epelboin, 1993), 
we explained how the Takagi-Taupin equations 
(Takagi, 1969; Taupin, 1967) may be numerically 
computed using a new algorithm that is more accurate 
than the previous ones (Authier, Malgrange & 
Tournarie, 1968; Petrashen, 1976). In this paper, we 
will discuss its use for the simulation of traverse and 
white-beam synchroton topographs. 

Carvalho & Epelboin (1990) explained that, in most 
experiments, the contrast may be explained as the 
addition of the contribution of incoherent point sour- 
ces distributed along the entrance surface of a crystal. 
This is due to the large source-to-crystal distance. It 
might not be true for low-emittance rings but this will 
be visible only in small regions of the image in which 
the contrast varies rapidly and it is doubtful that this 
difference will be visible in the experiments. This 
means that, for most white-beam Laue topographs, 
it is possible, to a very good approximation, to inter- 
pret the contrast formation and to simulate the images 
in the same manner as for traverse topographs made 
in the laboratory. 

Traverse topographs may be computed either by 
addition of the contribution of point sources dis- 
tributed along the entrance surface of the crystal or 
by application of the reciprocity theorem of optics. 
The latter method presents many advantages since it 
is possible to choose the sampling of the pixels in the 
computed image independently of the distribution 
of point sources, which is not true for the former 
method. This will be explained in detail in § III. 
Petrashen, Chukovskii & Shulpina (1980) attempted 
to compute a line through a traverse topograph using 
the reciprocity theorem but the intensity in the darkest 
parts of the image was strongly underestimated. 
Epelboin & Soyer (1985) showed that this was due 
to the limited precision of the numerical algorithms 
and were able to simulate whole images using the 
Tournarie algorithm (Authier, Malgrange & Tour- 
narie, 1968) and summing the contribution of point 
sources. Nobody, up to now, has been able to use 
the reciprocity theorem for image simulation. 

In this paper, we will explain how the new 
algorithm (Carvalho & Epelboin, 1993) allows the 
use of the reciprocity theorem. In § II we will present 
a new demonstration of this theorem then we will 
explain the principles of the simulation and present 
some computed images. 

II. The reciprocity theorem 

The first demonstration of the reciprocity theorem 
was given by Kato (1968) in the case of X-ray diffrac- 
tion. It was explained in greater detail by Petrashen 
e t  al .  (1980). We present here a new demonstration. 

Let us consider two geometries (Fig. 1) for diffrac- 
tion. In Fig. l (a) ,  a light source is located at point 
Q along the entrance surface of the crystal and we 
compute the intensity at point P on the exit surface. 
This will be called direct geometry. The incident beam 
propagates inside the crystal along So and Sh and the 
observation point is P. In Fig. l(b),  the situation is 
reversed: the observation point is Q, the light source 
is located at P and the incident beam propagates 
along §o, the reflected beam along §h. Both directions 
are reversed compared to Fig. l (a)  since r,o is parallel 
with Sh and §h is parallel with So. The reciprocity 
theorem says that a light source located at point Q 
(Fig. la )  creates at point P a diffracted amplitude 
that is the same as if the light source were located at 
point P and the observation point at point Q (Fig. 
l b). The reciprocity theorem does not say that the 
physical distribution of the amplitude of the light is 
equivalent in between these points, especially inside 
the crystal. It is simply concerned with an interchange 
of observation and source positions. This theorem is 
well known in optics but, to our knowledge, the only 
demonstration for diffraction (Landau & Lifchitz, 
1960) concerns the total field, i .e. the sum of the 
refracted and reflected fields ~o + ~h inside the crys- 
tal. Kato (1968) applies the theorem to the reflected 
field (J~h only, considering that both the source and 
the observation points are far enough apart that the 
beams are separated. 

The Takagi-Taupin equations are 

o %/OSo = i2 r,K~o % 

- i ¢ r K C x r ,  exp ( - i2wh • u)~h 

a aI.r h l O S h = i 2 7r g f l  h ~I~ h 
(1) 

- i z r K C X h  exp (i2zrh • U)~o, 

where grh and St0 are the amplitudes of the diffracted 

8 o / A  o s . /  
\\\ / 

Sh ~' p~ \ ~o (a) (b) 

Fig. 1. (a) Direct geometry: a light source is located at Q, the 
intensity is computed at P. So and Sh are the transmitted and 
reflected directions, respectively. (b) Reciprocal geometry: the 
light source is located at P and the observation point at Q. The 
transmitted and reflected directions are reversed. 
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and transmitted waves, Xh and Xn the Fourier com- 
ponents of the dielectric susceptibility, h the 
reciprocal-lattice vector for the studied reflection and 
u the deformation inside the crystal. K = 1/A is the 
wave number of the beam incident on the crystal, 
C = 1 or cos 20 is the usual polarization factor. In 
these equations, it is possible to choose the wave 
vectors so that/30 and/3h match at their extremities: 

f l0=[k  2 -  K2(1 +Xo)]/2K 2 

and 

/3h = [(k + h )  2 -  K2( 1 + Xo)]/2K 2. 

Usually, we choose /3h,0= 0, which means that the 
wave vectors corresponding to the refracted and 
reflected directions inside the crystal have the same 
length, ]k] = ]k + h I = K (1 + Xo). 

We define ~h as ~h(P) = CI9h exp (i2¢rh • u) and (1) 
become: 

O ~bo/a So = - iTrKCxg ~h, 

O~h/OSh = -iTrKCXh ~ o -  i27r(0h • U/OSh)CI)h, (2) 

which may be written, with ~o eliminated, as the well 
known equation (Takagi, 1969) 

0 2 Iffjlh/OSoOS h -Jr- i27r(O/OSh)(h" u)0 ~ h / O S o  

+ [TrEK2CExhXa+ i27r(OE/OsoOSh)h .u] ~h = 0. (3) 

The boundary conditions are (Takagi, 1969): 

~h(~) = 0 along the entrance surface (Fig. 2); 

aCPh(~)/aSh = - i T r K f  Xh( 3/0/ 3/h) a/re (~:) 

x exp [- i2~r(K • rs - k .  L)]. (4) 

3/0 = cos ¢0, 3/h = COS Ch (Fig. 2), r~ is the position of 
a point along the entrance surface which may also 
be designated by its coordinate ~ along the surface, 
k is the wave vector inside the crystal and K is the 
wave vector of the incident wave. 9'e is the amplitude 
of the incident wave. 

It is possible to solve (1) using a Riemann function 
(Authier & Simon, 1968). Takagi (1969) writes this 

B M A 

Jl i ..... 
I I 

I I 

I¢ h ~o ', 

m 
= 

Fig. 2. Geometry for the diffraction equations. ~ lies along the 
entrance surface, ¢o and Ch are the angles between the normal 
to the entrance surface and So and Sh, respectively. 

Riemann function v as the solution of the integral 
equation 

• (P)=-( i ' rrkCXh/s in20)  ~ 3/o(~)v(P,~:)aFe(~ :) 
BA 

x exp [ - i27r(K • r s -  k .  rs)] dE, (5) 

where B, A and P are points as shown in Fig. l (a ) .  
This Riemann function is the solution of the partial- 
derivative equation 

a 2 v( P, r)/aSoaSh - i2 7r(ah. u/aSh )[ aV( P, r)/aSo] 

+ ¢r2K2C2XhX~V(P , r ) = 0 .  (6) 

r is the position of a point inside the crystal. The 
boundary conditions may be written as 

1 along PA (7) 
v = exp ( - i27r{h .  [ u ( r ) - u ( P ) ] } )  along PB. 

Let us now consider the direct geometry (Fig. l a ) .  
A point source is located at point Q, which means 

~e(~) exp [ - i27r(K • r s - k .  rs)] = 6 ( r~ -  r~Q), 

where rsQ means the coordinate of point Q. Equation 
(5) becomes 

dP( P) = -iTr( KCXh/sin 20)v( P, Q) 

- Fv(P, Q), (8) 

thus, 

grh(P)--" Fv(P, Q) exp[i27rh.u(P)] .  (9) 

From (7), the boundary conditions are 

F along PA 

4~o(P) = F e x p ( - i 2 ~ ' { h . [ u ( P ) - u ( O ) ] } )  (10) 
along PB, 

where ~o(P)  means the amplitude of the diffracted 
wave at point P coming from the point source O. 

From the definition of gth, we may write 

gso(P) = x e x p ( i 2 7 r { h . [ u ( P ) - u ( Q ) ] } )  (11) 
along PA 

exp [i2~-h. u(Q)] along PB 

and (3) becomes 

oEaFh/OSoOSh -- i27r(Oh • U/OSo)(Ogth/OSh) 

"1- 7TEK2C2XhXfiaICh = 0. (12)  

Note that this equation resembles equation (6) for 
the Riemann function except that the axes So and Sh 
are reversed. 

Let us now consider the reciprocal geometry (Fig. 
lb).  We call ~h the amplitude of the diffracted wave 
for this geometry. Equation (12) is still valid except 
that now the positions of the axes So and Sh are 
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reversed (Fig. lb),  

a2 ~h/a~oa,~h -- i2-rr(ah- u/a~o)(a ~h/agh) 

-[- 7r2 g 2  C2XhXg!~h = 0 (13) 

with the transformations between the axes 

a/a~o = -a/ash a/a~h = -a/aso.  

Equations (13) and (6) look exactly the same when 
written with coordinates So, Sh transformed in this 
way. P is now the position of the source, Q the 
position of the observation point and the directions 
of the transmitted and reflected beams are exchanged. 

The boundary conditions are 

F e x p [ i E z r h - u ( P ) ]  along PA 

exp [i27rh • u(P)] 
~P(Q) = x e x p ( i 2 r r { h . [ u ( Q ) - u ( P ) ] } )  (14) 

along PB, 

which is exactly (7) except for a phase constant 
F exp [i27rh- u(P)]. We may now conclude that 

~ e ( Q ) = F e x p [ i E z r h . u ( P ) ] v ( P ,  Q). (15) 

By comparison of (15) and (9), it is clear that 
ap.Q(e) = app(Q), which is exactly what the theorem 
of reciprocity says. 

III. Application to the simulation of traverse 
topographs 

The simplest method to compute a traverse topograph 
or a synchrotron white-beam topograph is to add the 
contributions of individual point sources distributed 
along the entrance surface of the crystal (Epelboin 
& Soyer, 1985). This is called the direct method. 
Individual section topographs are calculated and the 
intensities are summed at each point P on the exit 
surface (Fig. 3). The distribution of sources along the 
entrance surface must be dense enough that the ampli- 
tude between two adjacent point sources varies slowly 
(Epelboin, 1977). For a perfect crystal, this means 

A E F B 

\ 

\ 

\ / 

\ / 

\V / / 
L" 1 ) D 

Fig. 3. The direct method. The total intensity at point P is the sum 
of all the contributions from the point sources distributed 
between E and F along the entrance surface. To compute a 
profile between C and D, one must add the contributions of the 
section topographs between A and B. 

that this distance must be an order of magnitude 
smaller than the distance between two extinction frin- 
ges along the exit surface, i.e. less than 1 Ixm. Thus, 
one has to add the contributions along BA of 
numerous sources to be able to compute the intensity 
at point P. Practically, this means that individual 
section topographs, corresponding to all the point 
sources from A to B, are computed then summed to 
calculate the distribution of intensity along the exit 
surface from C to D (Fig. 3). The distance between 
two adjacent points along the exit surface corres- 
ponds to the distance between two adjacent sources 
along the entrance surface. This gives a resolution 
for the simulation that is far too high compared with 
experimental resolution; a tenth of the computed 
points would be enough for the final simulation. 

The computation time is enormous. Let us give 
some figures. Assume that the width of an image is 
500 ~m and that the distance between two point sour- 
ces is 0.5 lxm, which is an optimistic figure. For a 
crystal 800 i~m thick and a Bragg angle of the order 
of 10 °, the base of the Borrmann fan is about 250 I~m, 
which means that AB is about 750 Ixm. Thus, 1500 
section topographs must be added to compute each 
line in the image! 

The reciprocity theorem allows the resolution in 
the image, i.e. the number of points in the computed 
line, to be decoupled from the density in the distribu- 
tion of sources along the entrance surface. To com- 
pute the intensity at point P on the exit surface, the 
Riemann function is computed for this point by 
integration of (6) or, since it is the same, by computa- 
tion of the diffracted amplitude along EF coming 
from a point source located at P in the reciprocal 
geometry (Fig. 3). Then, the intensity is summed from 
all the points along EF in this reciprocal geometry 
to find the total contribution at point P in the direct 
geometry. This is called the reciprocal method. The 
intensity at point P is known from a single integration 
of (13) and there is no longer any relation between 
the density of pixels, i.e. the number of points P in 
a line of the image and the density of sources along 
the entrance surface. This dramatically decreases the 
number of computations. With the same values as 
before, this means that, for a resolution of 2 ixm in 
the image, it is sufficient to compute 250 section 
topographs. The computation time is decreased by a 
factor 6. In fact, the figures are better since it is only 
necessary to use such a resolution in areas of the 
image where the contrast varies rapidly. The width 
of the image of a dislocation, for instance, in a traverse 
or synchrotron topograph is never more than a few 
tens of micrometres. Thus, the best method is to 
compute a first simulation with a poor resolution 
then, in the areas where the contrast varies rapidly, 
to compute a second one with a better resolution. 
Thus, one may expect more than one order of magni- 
tude less computation time. 
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Up to now, the accuracy of the numerical 
algorithms has not allowed the use of the reciprocity 
theorem. In a section topograph, the intensity in the 
direct image of the defect was underestimated and 
this led to wrong intensities in the image correspond- 
ing to a traverse topograph. This error was less visible 
when using the direct method (Epelboin & Soyer, 
1985). In our preceding paper (Carvalho & Epelboin, 
1993), we described a new algorithm that is more 
accurate than previous ones. We only summarize the 
conclusions here and show how the algorithm may 
be used in conjunction with the reciprocity theorem 
to compute traverse and synchrotron topographs. 

Two different methods have been described: the 
,gt method' and the ' ~  method'. With a standard 
network (i.e. a network similar for all incident planes 
without refining the network in the area where the 
direct image is created) for the integration of the 
Takagi-Taupin equations, both methods are valid if 
the minimum step is made much smaller than that 
usually satisfactory for the simulation of section topo- 
graphs, i.e. a decrease from 0.2 to 0.025 ~m along the 
exit surface of the crystal. We have shown that a 

3.70 
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2.60 r-- 
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( b )  

Fig. 4. Profile of intensity along a line in a traverse topograph. 
Silicon crystal 400 Ixm thick, Mo Ka 220. The characteristics of 
the dislocation are the same as those studied by Epelboin & 
Soyer (1985). The thickness of the crystal was decreased for the 
computation. Solid line: reciprocal method; dashed line: direct 
method. (a) Standard network: minimum step along the exit 
surface 0.2 I~m. (b) Standard network: minimum step 0.025 0.m. 

better method is to use both methods together: in the 
planes of incidence where a direct image exists, the 
gr method is used for the nodes between the direct 
image and the diffracted beam and the @ method is 
used for the other nodes. Switching between the two 
methods is done automatically using the criterion of 
validity of the geometrical optics (Balibar, 1969). In 
the other incidence planes, only the ~ method is used. 

Fig. 4 presents the profile of intensity in a single 
line of a traverse topograph. A dislocation lies 100 ~m 
under the surface of a silicon crystal 400 ~m thick. 
This is the same crystal as that studied by Epelboin 
& Soyer (1985). Fig. 4(a) has been computed using 
a standard network and a minimum step length, along 
the exit surface, of 0.2 ~m. This value is a reference 
since it is often satisfactory in most parts of the 
computation, except in the area where the direct 
image is created. The dashed line shows the profile 
computed using the direct method, i.e. by summation 
of the contributions of a distribution of point sources 
along the entrance surface. This is the method used 
previously by Epelboin & Soyer (1985). The solid line 
presents the result of the computation using the 
reciprocal method. It is obvious that the intensity in 
the direct image of the dislocation is strongly under- 
estimated. Computation of the profiles with a step 
eight times smaller gave the same result for the two 
methods. This required a much longer computing 
time but, when using the reciprocal method, very few 
points in the image must be computed with this finer 
mesh. For Fig. 4(b), the direct method needed 60 
times the time needed to compute the profile in Fig. 
4(a). The reciprocal method, by combination of the 
two networks from Figs. 4(a) and (b), the one with 
the larger step in the areas where the intensity is low, 
the one with the smaller step in the area where the 
intensity is high, requires 3 min, which is about ten 
times less than the time needed when using the direct 
method for Fig. 4(a). This definitively shows the 
advantage of the reciprocal method. It should be 
noted that the convergence between the direct and 
the reciprocal methods was not previously possible 
by use of the Tournarie algorithm (Epelboin & Soyer, 
1985). 

IV. Simulation of traverse and synchrotron topographs 

Fig. 5 shows the simulation of a Laue white-beam 
topograph. The original image shown in Fig. 5(a) 
was recorded at DCI LURE. It is a dislocation in a 
silicon crystal 800 ~m thick, which was previously 
used as a test by Epelboin & Soyer (1985). Fig. 5(b) 
is the simulation, using the reciprocal method, with 
a representation distance between two adjacent pixels 
of 2 ~m. The integration of the Takagi-Taupin 
equations was made with the standard network. The 
image was computed in two parts: first one pixel in 
three was calculated along a line and one line in two 
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along a column, then the critical part, i.e. around the 
direct image of the dislocation, which appears as a 
black vertical contrast, was computed for all the 
pixels. The two images were superimposed and are 
slightly visible because the background had to be 
renormalized between the two computations. The 
computation was performed with the standard 
network of integration and the quality of the image 
is satisfactory, although we know, from the previous 
study, that the intensity is underestimated in some 
parts of the direct image. This is not really visible 
since it corresponds to areas in a film where the 
maximum density of greys is reached. 

(a) 

We have studied in detail the simulation of this 
critical part of the image. As previously explained, 
the best result is achieved by a combination of the 
and qb methods and an automatic switching between 
them. However, it does not dramatically improve the 
present image, which is already good, since the 
maximum grey density is reached in this part of the 
image. Thus, our conclusion is that it is faster first to 
compute the image with the standard network. If the 
direct image seems to be wrong, it is necessary to 
compute this area again as explained above. For 
instance, we have simulated the image of the disloca- 
tion in quartz, which has been studied in the preceding 
paper (Carvalho & Epelboin, 1993). The dislocation 
lies parallel to the faces of  the crystal and it appears 
as a dark straight line in the topograph. We had to 
use the second method to obtain a correct width for 
the image. 

The computat ion of a traverse or synchrotron topo- 
graph remains a lengthy calculation. The image 
shown in Fig. 5 needs about 3 h  CPU time on a 
superworkstation. This is much better than using the 
direct method, which needs tens of hours. The possi- 
bility offered by the reciprocal method to decouple 
the resolution from the integration steps allows crude 
simulations for a first study but we are far from the 
possibility of simulations in real time near a syn- 
chrotron Laue station. The simulation is now usable 
but for selected studies only. 

(b) 

Fig. 5. Laue synchrotron topograph of  a silicon crystal 800 I~m 
thick. A =0.71 A, 220 reflection. (a)  Experiment: the studied 
dislocation is indicated by an arrow. (b) Simulation. Area 400 x 
330 p.m. Resolution 2 I~m. One pixel in three is calculated along 
a line, one in two along a column, except near the direct image, 
where all pixels are calculated. 

Concluding remarks 

It is now possible to simulate traverse and synchrotron 
topographs easily. The reciprocity theorem allows the 
resolution in the image to be decoupled from the size 
of the integration steps, so it is possible to choose its 
best value in all parts of an image. This not only 
speeds up the calculation but permits crude simula- 
tions with poor resolution in a reasonable time. It is 
up to the user to build up a strategy to save CPU 
time for a particular calculation; it will always be 
slow. Since our numerical algorithm is valid for exten- 
ded defects, it is possible to simulate all kinds of 
defects as long as a valid deformation model is known. 
This means that it is now possible to extract quantita- 
tive information from a traverse or a synchrotron 
topograph as has long been possible from a section 
topograph. Since this last technique cannot be used 
in many cases, such as for thin crystals or for most 
experiments at a synchrotron station, the possibility 
of simulating the experiment will give the same help 
to the physicist as the previous simulations for section 
topographs. 

CAMC acknowledges a doctorate scholarship from 
CNPq,  Brazil. 
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Abstract 
A harmonic valence-force-field rigid-ion lattice- 
dynamical model fitted to Raman and IR spectral 
data and extended throughout the whole Brillouin 
zone has been used to calculate the atomic displace- 
ment parameters, entropy and molar heat capacity 
for corundum (a-A1203) and bromellite (BeO). The 
agreement with experimental data is good. 

Introduction 
In the last few years, the importance and physical 
significance of crystallographic atomic thermal par- 
ameters (or atomic displacement parameters, a.d.p.s) 
have been emphasized by chemists and physicists 
[see, for example, Pilati, Bianchi & Gramaccioli 
(1990b) and references therein]; at the same time, 
considerable interest in this subject has also been 
developed by mineralogists [see, for example, Downs, 
Gibbs & Boisen (1990) and references therein]. 

It is well known (Willis & Pryor, 1975) that theoreti- 
cal estimates of a.d.p.s can be best obtained from 
lattice dynamics, following the procedure first 
described by Born &von Karman (1912, 1913) using 
a conveniently sampled set of values of the wave 
vector q in the Brillouin zone [corresponding to the 
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reciprocal unit cell of the crystal; a recent discussion 
of such sampling is given by Pilati, Bianchi & Gramac- 
cioli (1990c)]. For a particular value of q and for a 
harmonic model, the average energy E,Q of each 
normal mode (~q) of frequency u is 

E,q=hv{½+[exp (hv / kT ) - l ] - l } ,  (1) 

where h and k are the Planck and Boltzmann con- 
stants, respectively, and T is the absolute tem- 
perature. The limit as u --> 0 of the above expression is 

l imE ,  q = l i m [ k T / e x p ( h v / k T ) ] ,  (2) 
v--,0 v--,0 

which shows that the contribution to vibrational 
energy grows when the frequency is decreased. This 
happens because the lowest vibrational-energy levels 
are more populated than the highest levels, a 
phenomenon that is enhanced for low temperatures. 

From these data and the mass-adjusted polarization 
vectors ep,,q of the atom p in the unit cell, which are 
part of the eigenvectors of the dynamical matrices 
D(q), the a.d.p.s Up can be obtained as 

• e * T  Up = (Nmp) -~ ~, E~q(2WV~q)-2%,~q p,~q, (3) 
6q 

where N is the total number of unit cells in the crystal. 
The simulations are extended to all the vibrational 
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